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A CYLINDRICAL PROBE IN AN ELECTROHYDRODYNAMIC FLOW, NON-COLLINEAR WITH THE 

ELECTRIC FIELD VECTOR* 

N.L. VASIL'YEVA, G.L. SEDOVA and L.T. CHERNYI 

A solution is obtained for the problem of a cylindrical probe with 
arbitrary (non-circular), well streamlined profile, situated at zero 
angle of attack in an incompressible, electrohydrodynamic (EHD) flow, 
without taking into account the effect of electric space charge in the 
flow and the resistance of the probe. The general case, in which the 
velocity of incoming flow is directed at an arbitrary angle to the 
unperturbed electric field strength, is discussed. All modes of the 
flow past the probe are studied and the corresponding current-charge 
characteristics of the probe are obtained. A method of diagnosing the 
concentrations of various types of charged particles in the flows of 
multicomponent and multiphase media is given. The results obtained can 
be used in developing a method of diagnosing various EHD flows in nature 
and technology, and in the processes of coating streamlined bodies using 
an electric field. 

The current-charge characteristic of a probe in a medium at rest was obtained in /l/ for 
a cylindrical probe of circular cross-section, and a number of special cases of EHD flow, 
non-collinear with the direction of the unperturbed electric field past a probe, were studied 
in /2/. However, the current-charge characteristics of a probe obtained in /2/ referred only 
to the modes of flow corresponding to EHD flows collinear with the direction of the electric 
field. 

1. We shall consider the plane steady state problem of EHD flow past a cylindrical 
metal probe. Let the parameter of EHD interaction, characterizing the reaction of the 
electric field on the motion of the medium, be vanishingly small, and let the probe have a 
streamlined profile positioned at zero angle at attack in the incoming flow. In this 
connection we shall regard the velocity field of the medium as given, and approximate it with 
a velocity distribution corresponding to a potential attached, irrotational flow of an 
incompressible medium /3/, which is admissible when Rez 2R~~lv>l, M= uOIc<i where R is the 
characteristic transverse size of the probe, u*,v is the velocity and kinematic viscosity 
of the medium and c is the velocity of sound in the medium. Here and henceforth the 
superscript0 will denotethecorresponding parameters of the EHD flow unperturbed by the probe 
at the point where it is inserted. 

When computing the perturbations of the electric field caused by the probe, we shall 
neglect the effect of the eletric space charge in the flow and electric resistance of the 
probe material. This is admissible when 

where ej, bj, nj 
W 

is the charge, mobility and density of the j-th type of particle (j =I,&..., 
in the EHD flow, E* is the electric field strength e is the permittivity of the medium 

and a, is the conductivity of the probe material. We mean by the particles the ions or 
charged particles of the dispersed phase, small enough to have negligible inertia and for 
their resistance to satisfy Stokes's law. 

The inequalities (1.1) always hold for metal ions of sufficiently small size. In this 
case the electric-field distribution around the cylindrical probe carrying the charge Q*(per 
unit length) can be approximated by the electric-field distribution around a perfectly con- 
ducting body of the same shape and carrying the same charge, with permittivity e, and in an 
external electric field of strength EO /4/. 

The assertion formulated above enables us to write at once an explicit expression for 
the velocity of the particles of the j-th type w,* =u* + b,E* in complex form in the 'z = 
z + iy plane: 
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(1.2) 

Gj (5, RejE, QjQj) = [RejE + ev (- i$f)I 5 + 

[Ref*- exp(iQj)]a+ 2QLn5 

bi (EW) 

$1 = arccoS , bj ( JJ-o,a 

Here x, y is a Cartesian system of coordinates in the plane of the flow, chosen so that 
ufl = (110, 0) where u"> O,$j is the angle between the vectors u0 and bfEO, La (z) is the 
conformal mapping, on the outside of a circle of radius R in the 6* plane, of the outside 
of the probe in the flow plane, satisfying the condition that dc*laz = 1 when z = 00. 
This condition uniquely defines the above mapping, and this also includes the quantity R, 
which can therefore by regarded as the characteristic transverse dimension of the probe. 

For example, for a cylindrical probe whose cross-section in the s plane represents an 
ellipse stretched along the x axis, with the semi-axes a, b(a> b), we have 

c* = '/z (l/z2 + b’ - u2 + z), R = i/2 (a + b) 

Here we choose the branch of the root for which l/z'+ br- a‘% = 1 when z=co. In 
particular, for a plate of width 1 we have a=1/2, b=O, therefore R = l/4. 

The product R 1 bj 1 E’Gj represents a complex velocity potential of the charged particles 
of j-th type in the c* plane, in the case of a potential, attached, irrotational incompress- 
ible EHD flow past a perfectly conducting cylinder 1 c* 1 = R carrying a charge Q, where the 
flow has an infinitesimal electric space charge and the following values of u*,E* at c* = 00 
(in complex representation): 

(u' + i~")+~ = CL", bj(Ec + iE”)~=m = 1 bf 1 E” elp (i$j) 

When computing the perturbations in the charged particle density caused by the probe, we 
shall neglect their diffusion and volume reactions involving various types of particles. This 
is admissible, provided that the following conditions hold: 

Here Dj, nf, vf, Kj are the diffusion coefficient, the concentration, local rate of 
production or annihilation due to volume reactions, and the rate of surface reaction of 
adhesion and discharge on the probe surface for j-th type particles. The first two conditions 
of (1.5) always hold in sufficiently strong electric fields, and the last condition holds for 
metal probes with the property of a high rate of discharge of the charged particles on their 
surface. As a result, using the equations of balance of various types of charged particles 
and the fact that the fields u, E are solenoidal, we obtain the following relation for deter- 
mining the perturbation in the concentration of j-type particles: 

(u* + bjE*) Cuj :z c: 

Hence, it follows that in the formulation of the problem used here, the particle density 

nj is constant along the stress lines. For the stream lines of the particles arriving at 
the probe from infinity, the constant is equal to the value of nj" in steady flow at the 
point where the probe is introduced, and for the stream lines of the particles originating at 
the probe the constant is equal to zero since there is no emission of charged particles at 
the probe, by the conditions of the problem. Using such a distribution of the charged 
particle density around the probe and taking into account relations (1.2) for the electric 
current of charged particles of the j-th type Jf’ impinging on the probe (per unit length 
of the probe), we have the following expression: 

J j* z - efnjO s (urv) dl = - efnj ] bj) iPR Im [Gj(cf') - Gj (cj-)] (1.6) 
Li 

Here the integral is taken over the segment Lj of the probe contour in the z plane, on 
which the stream lines of the charged, j-th type particles arriving from infinity terminate, 
53 are the points of the circle 15 I = 1 in the 5 plane, corresponding to the ends L* 

of the contour L under conformal mapping 5 = 5*(2)/R. The ends of the contour L are labelled 
in such a manner, that the motion from L_ to L, along L is anticlockwise in the z plane. 

We note that conformal mapping does not alter the qualitative pattern of the stream lines 
of the charged particles. Therefore, in order to determine Gj* it is sufficient to find 
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the ends of the segment of the circle ICI=1 on which the stream lines of charged particles 
in the 5 plane end after arriving from infinity. The stream lines are images of the stream 
lines of charged particles in the z plane under conformal mapping 5 = c*(a)/fi.. Since the 
stream function of the charged particles along their stream lines is Im Gi (f, RajEY Qj, $1) = 
con&it follows that the pattern of the stream lines in the 5 plane, in particular the 
values &* and the dimensionless electric current Jj of j-type particles arriving at the 
probe 

J,= Jj* 
2nRejnj@IbjIE" = - & Im [Gj(t*) -Gj &-)I (1.7) 

are fully determined by the dimensionless parameters RejEY Of, $J appearing in the expression 
(1.3) for G,(t). 

2. Let us now inspect the behaviour of the stream lines of every type of charged 
particles, and the dependence of the electric currents Jj arriving at the probe on the 
characteristic parameters Rejr, Qjp+j. Since in the formulation adopted here the deposition of 
various types of particles at the probe takes place independently, it is sufficient to carry 
out the investigation for any single j-th type particle. In the rest of this section we shall 
neglect the index j on the quantities JJ~ RelE, Qjv $j * 

Let us first consider the case Rer> 1 and O<Q< 1. Fig.1 shows the transformation 
of the qualitative pattern of stream lines in the 5 plane, with the angle $? between the 
vectors uO, tEO decreasing from n to 0. We see that when *=n, there are no stream lines 
arriving at the probe surface from infinity (Fig.la). Therefore when *p=n, we have J =O.. 
The symmetry is violated when J1 decreases and continuous deformation of the stream line 
occurs, but their qualitative behaviour remains the same as in Fig.la, until the separatrices 
O_U and B,l,I+ merge at some critical value $ =& . When $<&, the separatrices 

split again, the qualitative pattern of the stream lines take the form 
lines arriving at the probe from infinity appear, and we have J > 0. 
decreases further the current J increases until the upper (at 11 =Zp+) 
shaded zones (see Fig.lb) adjacent to the probe vanish consecutively 
where q* = arccos (fQ), after which the current J becomes independent 

When 21,<*-+, the stream lines will come into tangential contact 
ICI=1 at the points &. 

This enables us to obtain, using relations (1.3) and (1.7), exact 
for c* (at t<$*) and for J (at $<$I_) 

shown in Fig-lb, stream 
When the angle 
and lower (at q-*5 
for values Ip=%z 
of Ip. 
with the circle 

analytical expressions 

~*=~~(-Q*~~~~-Q~z)=exp[~(~+~~&rc~osQ*)l; Q<$J~L~ 

J = 2n-* (v/1 - Qz--- Q arccosQ); O,<+< arccosQ 
(2.1) 

(2.2) 

Since ImG = const along the stream lines, it follows that when q>+~llt we have 
ImG(cf) = Im G(E+) (see Fig.lb) and the singularities will be found from the condition 
dGidc = 0. 

I, = 
Re” “+ =-f’& ! 

~+p _ .itp 
ReE + c?-j* 

(2.3). 

Numerical computations using formula (1.7) and taking into account the above conditions 
and relations (1.3) and (2.1)-(2.3), lead to the relations J (R@, Q, 4) shown in Fig.%.and 
covering the whole domain of variation of the angle 9. 

Let now consider the case ReE<l,O<Q<l. The transformation of the qualitative 
pattern of stream lines of charged particles in the 5‘ plane which takes place when 9 decreases 
from n to 0, is shown in Fig. 3 (Q< Qo, Q. =1/s - VWZ)+ and Fig.4 (Q > Q& When tp = n and 
Q-cQ&, we have the following expression For the current based on relations (1.7), (2.3) and 
Im G(c*) = ImG&) (see Fig.3a): 

J =2n-i[1/1 -(Re")Z-QQz- Q arccos (Q/Q,)]; 4 = n, ReE < 1 (2.4) 

The current J changes as +# decreases until 4=%*# whereupon the upper (at 
and lower (at 9=*-p-) shaded zones in Fig.3b vanish one after the other. 

9 =9+) 
After this (i.e. 

when O<+p(*_,-) the current J remains constant and equal to (2.1). If on the other hand 
Ip=n and Q> Qot we have no stream lines arriving from infinity at the probe surface (see 
Fig.la), and therefore J = 0. This situation is maintained as the stream lines deform, 
corresponding to the reduction in 9, 
lines mentioned above appear, 

to some critical value &. When *,c&~, the stream 
andJ>O.Figs.4b and 4c show the change in the qualitative 
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pattern of the stream lines when the angle 11 passes through the value &. When there is a 
further reduction in $ the current J changes, until when II, =$* the upperand lower 
shaded zones in Fig.4c disappear, one after the other. After this (i.e. when 
the current J remains constant and equal to (2.1). 

O<ll,<V_) , 

Fig.1 

Fig.3 

Numerical computations of 
into account relations (1.7)) ( 

Im Q (I+.) (see Fig.3b and 4c) 
Fig.5 and 6. 

Fig.2 

Fig.4 

the current J (over the whole range O( Q( 1, 0~9~ n) taking 
2.1)-(2.4) and the fact that when $>$* we have Im (cf) = 
yield when ReE<l the relations J* (ReE. Q, 9) shown in 

Fig.5 

1 2 

Fig.6 

We note that the relation J ($1 is not monotonic when Re*<l and Q<QO. This 

is due to the fact that, as calculations show, when the angle v decreases, the channel 

z+L+5+5-Lr_ (Fig.3b), along which the particles are deposited on the probe, at first becomes 
narrower, but later widens again. In particular, when the values of Rer and Q are 
sufficiently close to unity and Qo, respectively, the channel may become completely over- 
lapped at some values of $ and the current J may vanish as a result (see the relation shown 
in Fig.6 for ReE = 0.6, Q = 0.75). 

Finally we can show that for Q>l (and arbitrary ReE,$) no stream lines of charged 
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particles arrive at the probe from infinity, and hence J =O. 
The study of the qualitative pattern of the stream lines of charged particles and the 

calculation of their electric current J arriving at the probe can be carried out in exactly 
the same manner for Q<O. We find that the stream line patterns are obtained, for any 
value of Q<O, from the stream line patterns given above for the opposite value of -Q>O 
by rotating them by 180° and reversing the direction of motion. This implies that the func- 
tion J (ReE, Q, 9) (Q 5 0) satisfies the relation 

J (ReE, Q, 3) - J We”, -0, 44 = -24 

from which we can obtain the relation for J(ReE, Q, 4) and Q<O in terms of the relation 
J (Rer,Q,*) when Q> 0 investigated above. We also fihd that formulas (2.2) and (2.4) 
remain valid over the whole range -l<Q< 1, and at IQ I> 1 we have J = 1 QI - Q for 

any ReE, 9. 

3. Let US now consider the application of the above theory of the diagnostics of the 
concentrations of various type charged particles in EHD flows. Using the results obtained 
we can write the current-charge characteristics of the probe as follows: 

(3.1). 

By measuring N values J,*ik = 1, . . . . N) of the electric current arriving at the probe 
for N different sets of parameters Qk*r E,O (the magnitude and direction of E@ can be 
varied by applying a sufficiently strong external field), we obtain from relation (3.1) 

(3.2) 

The dependence of the function Jj on its arguments was determined above. The system of 
Eqs.(3.2), linear in njo, enables us to determine the values of the concentrations of all 
N types of charged particles in the EHD flow over the measured values ofJt*,Qx*,&* (k=1,..., 
N), provided that the properties of separate particles of each type (i.e. t,,~). are known, 
and detjl c&j II f 0. In order to satisfy the last condition in the general case, we must make 
the measurements at supercritical angles $,, i.e. when $j >Zpj-. Indeed, when $,<$j-, the 
functions J, are given by the relation (2.2) and in case of, for example, unipolarly charged 
EHD flows they are, in general, independent of j, and detIIcKI(I = 0. 

Using the probe for EHD flows for values of the electric field strength which are not 
collinear with the velocity of the flow, we can , using the measurements of the current-charge 
characteristics, establish the concentrations of all types of charged particles. 
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2. 

3. 
4. 
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